Shopping Cart
Your Cart is Empty
There was an error with PayPalClick here to try again
CelebrateThank you for your business!You should be receiving an order confirmation from Paypal shortly.Exit Shopping Cart

Tuomey Turfgrass Consulting, LLC

Providing Expert Turfgrass & Horticulture Consulting Services

My Blog


view:  full / summary

Tree Cavities

Posted on August 12, 2016 at 2:04 PM Comments comments (799)
In this blog post, I’m going to put my arborist hat on again.  I’m going to discuss something that I’m sure just about everyone has seen; a large hole in a tree.  Sometimes it is call a hollow.  In arborist language, we refer to these as a cavity.  In many cases, these are a result of some sort of damage, whether that damage is from lightning or high winds or animals.  Many times, trees in an urban or suburban setting may have a cavity or a wound due to something caused by people.  These injuries are usually inadvertent.  Someone strikes a tree with an automobile, construction equipment or a lawn mower.  It could also be as a result of improper pruning.
Trunk wounds that penetrate the bark will damage the cambium layer, a thin layer of vascular tissue, which is vital to movement of water and nutrients.  If less than 25% of the bark around the trunk has been damaged, the tree will probably recover.  When fresh wounds occur on the trunk, the damaged bark should be removed carefully, leaving healthy bark that is sound and tight to the wood.  A wound dressing (tree paint) is not necessary.  Sometimes I do use a spray “pruning tar” when I prune away larger branches.  Theoretically, it seals the area where the branch was removed.
For wounds, you will be able to observe the wound closing from the edges each year as the tree grows.  When an older wound is discovered, remove the dried and loose bark back to the area where the new wood can be seen along the edges of the wound.  Trunk wounds that are not addressed could potentially be a hazard in the future.
Once a wound occurs, decay-causing fungi can enter the heartwood and the decay process begins.  Trees have a unique defense.  The wood around the injury begins to produce special compounds in the wood cells that set up a wall or barrier to isolate the infected area.  This is called compartmentalization.  In a vigorous tree, new growth continues to form and add to the sound wood.  Once compartmentalized, discoloration and decay will spread no further unless one of the barriers is broken.  Storm-damaged branches should be properly pruned to expedite the healing process.  Avoid pruning directly against the trunk since flush cuts can lead to extensive decay.  Remember to prune away from the branch collar, as I said in an earlier post. (“Tree Care for Turfgrass Warriors”)  Prune hazardous branches immediately.
Years ago, filling cavities was an accepted practice.  The wound would be cleaned and scraped down to sound wood and filled with cement, mortar, or bricks.  These practices frequently penetrated the tree’s natural defensive barrier, allowing decay to spread.  Fortunately, this practice has decreased, along with flush cuts and tree wound paints.  If the tree ever had to be removed, having cement or bricks in a tree could be very dangerous for the arborist crew.
Your mission is to help the tree heal those cavities/wounds.  If we can't get them to heal, we can try to get the tree to compartmentalize those cavities.
The cavity in itself is not important unless it is a very large one (like half the diameter, or more, of the tree), but it is the breeding place which it affords for enemies such as insects and fungi that is highly important and worthy of the most serious consideration in the care of trees. 
The accumulation of moisture and the exclusion of light, which are characteristic of every cavity, are the ideal conditions which the spore of a fungus disease seeks.  You want to make sure this does not become a major health issue for the tree so it doesn't become weak, then come down on your house, automobile or loved ones in a storm.
Having cavities near the base is worse than having one up high.  If decay sets it in at the base, the tree could become unstable.  Here are some courses of action:
1.  You want to keep critters and other stuff out of that hollow area in that tree, get some screen material (metal or plastic screen is fine - like the material from a screen door or porch).  Cut it to size for the entire area.  Tack it up around the area.  Use short nails (like tacks, not thumb tacks, but those might work).  Do not use long nails that will penetrate through the bark into the cambium.  A screen will allow air flow.
2.  Do not spray more water into the openings to try to clean it.  You want this area to get as dry as possible. 
3.  Using your air hose attached to an air compressor to clear it out is fine.
4.  Try to clean out or pull away any loose material.  But don't pull away any "good/healthy" bark or wood.  Cut off any ragged bark edges with a sharp knife or saw.  You could even use a hammer and chisel.  If you can take the surface down to healthy material, that's fine.  Take care not to remove any healthy bark and expose more live tissue than necessary.  If possible, the wound should be shaped like an elongated oval, with the long axis running vertically along the trunk or limb.  All bark around the wound should be tight.
5.  If you are feeling really industrious, get some lime sulfur solution and spray it (lightly, with a pump sprayer, not something attached to your garden hose or a hose attachment) all over the inside of the cavity - after you manually clean it out.  Lime sulfur is very caustic.  It can mess you up.  Wear protective clothing, a mask and eye protection.  Lime sulfur also may be hard to find.  Or, use copper fungicide.  Same procedure.  Copper fungicide can be found at Home Depot or Lowe's.  Do this, then install the screen.
6.  As I said, in the old days (actually not too long ago), they used to fill tree cavities with concrete.  They thought it would strengthen the tree.  It is now known that it causes more injury.
7.  Once you have treated the cavity, and have covered it with the screen for a while, some say you can fill the hollow with spray insulation.  Not sure about that.  I think that could possibly still retain moisture, or trap moisture behind it.  The point is to get that cavity clean and as dry as possible.  The screen allows for airflow and keeps out any animals.
8.  This tree needs TLC now.  It is under stress.  Make this tree the top priority for tree trimming/pruning.  Get rid of the deadwood up top.  If possible, or if there is a bed around the tree already, get some good mulch around it. 
9.  If there are insects in the vicinity, it is okay to spray insect killer/pesticide around that area.  Just on the surface of the soil.  Do not get it on the tree.
10.  This tree will need SLOW watering if you get in a bad drought at some point. 
11.  Also think about fertilizing the tree.  Having a professional arborist fertilize it would be great.  If you can’t go with a professional, do it yourself.  Fertilizer stakes are okay.  Getting a root feeder and using that with your garden hose would be even better.  Remember to fertilize out along the drip edge. 
Below is a photo of a tree in my yard.  I’ve done what I could.  The screen material I used is something used to cover a gutter on a house.  It was attached with some very small and shallow screws which did not penetrate the bark.  The bad news is, this cavity is right at ground level, at the base.  Is does get wet.  But, the screen allows it to dry out well.  Guess we’ll have to see how this works.  Seems okay for now. 

Tools and Equipment – Mine and Yours

Posted on January 29, 2016 at 2:13 PM Comments comments (359)

I’ve been wanting to do this for a long time.  I want to post some pictures of my equipment, machines and tools I use for having the best lawn and landscape in the world.  And, maybe at some point, you will post or send me pictures of your stuff.  Do you have a special tool or piece of equipment you want to show off?  Email me at:
Explain what it is.  Get as detailed as you want.  And, tell us why you love it so much…or maybe why you hate it.
My first love is my tractor.  I have 4 implements I tow behind it (I will get in to those later).  Many of my friends know the story behind my tractor.  When I first bought it, I told my wife it was a surprise birthday gift for her.  I brought her out to the shed so she could see what I got her.  That joke did not go over well.  There was an actual gift so I lived to tell about it.  But, this tractor has been a BIG help and is an awesome piece of equipment.  In May of 2016 she will be 6 years old (the tractor, not my wife).  She has a little over 200 hours on it (again, talking about the tractor).  My wife now says that she is so nice because she lets me ride “her tractor” to mow the lawn any time I like.
The tractor is a John Deere, X300, with a 42inch/107cm (“Edge Extra” Cutting System) mower deck.  She has a dry weight of 704 pounds and is powered by an 18.5 horsepower iTorque Power System; V-Twin, air cooled engine, that is 36.8 cu in./603 cc.  The transmission is a Twin Touch hydrostatic, K-46.  The electric system is 15 amps and requires a battery with 340 cold crank amps.  The fuel tank holds 3.3 U.S. gal/12.5 L.  And, she has an incredible, mind blowing, top speed of 5.5 mph/8.9 km/h. 
Brand new, this mower costs about $3,000.00 to $3,500.00.  I estimate the current value of my mower about $2,700.00.  These mowers retain their value well.
Here’s a few pics of this work horse:

As you can see, I added some features to this tractor.  Besides the flames, the hub caps, the camouflage seat cover and the skull & crossbones; she has some additions that are quite important. 

The first addition you really cannot see.  It is the mulching kit.  The kit comes with a plug or a block that covers the side discharge chute.  And it comes with two mulching blades. 

So, every time I switch out the blades, I use the “mulching” blades, not the “side discharge” blades or the “rear discharge” blades.

(Rear discharge blades are for when you have one of those bagging devices mounted on the rear of the tractor and the clippings are shot up a tube from the side of the deck into the bags in the back.) 

The mulching attachment was easy to install and cost a little over $100.00.  Here’s a pic of what it looks like with the mulching attachment installed, a view from the bottom of the deck:

Another good idea was to install the “Front Brush Guard”.  This thing is pretty strong.  It has come in contact with my trees, my fence, my fence posts, my house – everything.  The hood of the tractor is some fairly light weight plastic/fiberglass.  The first time the front of my tractor would have come in contact with anything listed above, it would have destroyed the hood.  A new hood costs @ $580.00.  The brush guard costs @ $130.00.  Here’s a picture of the front brush guard:

Safety dictates that you always walk your turf area before you mow.  You want to make sure you identify and remove anything that you don’t want your mower to hit or go over – sticks, stones; any sort of debris.  Some things in the turf area can either cause damage to the mower or be propelled some ways away – hitting a vehicle, a glass window, of maybe even a person.  Sometimes I miss things in the turf area and I do not want to shut down mowing operations by having to walk to the trash can with items all the time.  So, if I see something, I just shut down the moving blades, put the mower’s parking brake on, go fetch whatever I see in the turf area, put it in the cargo bucket mounted on the rear of the tractor, and then drive on with the mission.  This bucket is also good for holding shears, gloves, shovels – any other tools or gear you may need while you are running around the property.  Besides, it looks cool.  That was @ $40.00.  Here’s a picture of one up close:

 My next topic was gonna be about maintenance.  But, before I get into that, here’s a picture of one of my Turfgrass Warriors in Arlington, VA.  This is Rick.  Rick is a very special TURFGRASS WARRIOR because he uses a self-propelled (No Engine!), reel mower.  Most of us are familiar with a “rotary” mower that is powered by a gas engine (some are electric).  On a rotary mower, the blade rotates parallel to the ground like a helicopter.  It cuts the grass by impact.  Sometimes (especially if your blade is not real sharp) the grass can be torn or shredded.  With a reel mower, the bands of blades are rotated perpendicular to the ground and the grass leaves are cut like using scissors.  Reel mowers (powered ones) are what is used on golf courses and other high quality sports turf areas.  Reel mowers like Eric’s are quiet, cut very well, and do not emit pollution.  Reel mowers are also cheap, easy to maintain and provide excellent PT (Physical Training).  Rick’s yard is maybe 4 to 5 thousand square feet.  That’s real good PT.  (Maybe I should say “REEL” good PT.)  Rick, you are my hero.

Okay.  Now back to maintenance.  If you have spent any amount of money on your tools and/or equipment, you need to keep those things maintained.  Especially if you’ve gone out and spent a few thousand dollars on a large mower.  I told you how much I paid for my tractor.  Some real high end mowers can be upwards to 8 or 10 thousand dollars.  The commercial mowers cost even more.  Even a pair of manual hedge trimmers need to be serviced; sharpened, lubed, etc.
My mower has a digital display that shows the number of hours it has run.  Most equipment like this does not have an odometer.  And, just like your automobile, there is a service schedule.  Always read the owner’s manual!

My X300 has lubrication intervals every 50 hours – that’s basically injecting the grease fittings with a grease gun.  Those are around the bigger moving parts – steering assemblies, mower spindles, foot pedals.  Of course, I use authorized John Deere grease.  The tractor also has a service every 100 hours or annually.  That service includes: change engine oil and filter, replace spark plugs, replace air filter elements (it has 2 elements, a foam pre-filter and a paper cartridge primary filter), replace fuel filter, clean engine cooling fins, check mower belt, sharpen / replace blades, clean bottom side of deck, check tire pressure.  And then, there is a service every 200 hours.  That’s when the valve clearance has to be checked or adjusted.

I do all my annual/100 hour maintenance after my last cut of the season in the late fall, before I store the tractor for the winter.  I’ve posted a picture here of the maintenance kit that I purchase every year.  It is the “LG256” kit and costs about 48 dollars (without shipping).  So, every fall, I not only service the mower, I clean it real well, take the battery out of it (bring that inside the house) and put a cover on it.  Even though the tractor stays in a shed, I still cover it.  I’ve also got a picture of my mower with the cover on.

This is the home maintenance kit.

Here are some pics of the tractor cover I use in the winter.

There are two more facets to my winter storage routine.  I put in the fuel tank a few ounces of fuel stabilizer, then I fill the fuel tank as full as I can get it.  I run that fuel stabilizer through the engine for about 5 to 10 minutes.  Also, when I pull the two mower blades off of it, I keep those blades off during storage.  I put the sharp blades back on in the spring.  So, in the spring I’m fairly ready to go.  Pull off the cover.  I put the battery back in, install fresh (SHARP) blades and I’m ready to go.

Let’s talk about blades.  I cannot stress enough the importance of having sharp blades.  And replacing blades yourself is a critical operation.  Whether you have a rotary mower or a reel mower, sharp blades are very important.  Some turfgrass warriors sharpen their own blades, or they have the blades sharpened by someone else.  Whether you sharpen them or someone else does, you or the other guy really need to know how to do it properly.  If too much blade material is shaved off on one end, the blades can be out of balance.  Out of balance blades can damage equipment or be a safety hazard to personnel. 

Balancing mower blades on your own is not rocket science, but, again, you really need to know what you are doing.  To balance the blade, sharpen it first.  Many turfgrass warriors have good luck just hanging the blade from a horizontal nail sticking out of the wall of the shed or garage.  Put the blade on the nail through the center spindle hole and watch the heavy end drop.  Remove material from the heavy end until the blade hangs level.  For 5 bucks you can buy a blade balancer which consists of a vertical nail that a cone rests on.  Your blade sits on the cone as you watch the heavy end drop.  Here’s a picture of a good 5 dollar balancer.

Here’s my solution: I buy new mower blades for each mowing season (spring and fall in this region).  I take the old blades and throw them in the recycle bin.  New blades (a set – my mower takes 2 blades) cost about 48 bucks a piece (without shipping).  The set of new blades comes with fastener nuts and even some written instructions. Here’s a picture of my blades when they come out of the box:

Some final “safety” thoughts on blade replacement.  New or re-sharpened blades can be dangerous.  They can be VERY sharp.  I always wear some good thick leather gloves when handling the blades.  Before you do anything, disconnect the spark plugs!  Because while you are underneath, you don’t want the mower to start! 
I can loosen the mounting hardware with a socket and a long “breaker bar”.  You will need leverage.  You do not necessarily need an impact wrench.  Do not lube the spindle or the nut.  On my mower there are two “cupped” washers.  I put those back between the blade and the nut – with the cupped side facing up.  Here’s a “breaker bar”:

Another good tool to have is a “mower blade holder”.  You have to get the mower blades to hold still when you are installing or removing the blades.  Some say shove a block of wood in there.  That is a good “field expedient” method, but it never worked well for me.  A blade holder costs about 10 bucks.  Here’s 3 pictures of one:

Now, above, I mentioned the valve clearance.  That maintenance activity is a little beyond my capability.  So, I get the local dealer involved.  There are two dealers in my vicinity.  One in Maryland will come pick up your tractor and take it back to their shop.  Unfortunately, that takes a long time in my opinion – and you are without your tractor for that period.  A different dealer in Virginia will come to your house and do the maintenance right there, on the spot.  It is not cheap.  But when you need an expert for something, you sometimes gotta suck it up.  Here are some pics of the maintenance guy doing the maintenance on my tractor in my front yard/driveway.  They have some real cool trucks, completely outfitted w/ welders, lifts, cranes, generators, spare parts – everything.  These pictures are when he did the valve clearance about a year and a half ago.  I had him do all the fall service I usually do myself.  I figured – why not – he’s here anyway.  But, I did hand him my LG256 kit I had.  Saved some money on parts.  Afterward, I just drove the tractor into the shed and got her ready for winter storage.

That's about it for now.  I'm still waiting for you all to send me pictures of your stuff.

Fall Leaf Removal

Posted on January 28, 2016 at 12:02 PM Comments comments (436)

In much of my service area, here in the mid-Atlantic region, there are many “old growth” trees.  The term old growth is kind of an arborist term.  It usually refers to a large stand of trees or even a stand of trees as big as a forest, trees that have remained relatively undisturbed.  In this case, what I mean by old growth trees are old and large trees in an urban or suburban landscape.  Trees that have been there for a long time and have a rather large trunk radius at chest height.  
I’m a big guy, six and a half feet tall.  If I cannot wrap my arms completely around the trunk of a tree, that’s a big tree.  And logic dictates that a tree with a trunk that size, or larger, is a fairly old tree.  On my property I have 18 old growth trees.  My calculations on their age range from around 150 to 175 years old – at least – maybe even older.  I imagine where my house was built used to be a forest.  I have written other blog posts about tree care (e.g. “Tree Care for Turfgrass Warriors”) but in this blog post I’m going to focus on what to do about all those leaves that come down in the fall.  Should you remove the leaves?  What can you do besides removal?  And, what do those leaves do to the soil if they are not removed?
The short answer to the first question is: YES.  If you want quality turf, you need to do SOMETHING about those leaves.  Turf needs sunlight to thrive.  Turfgrass leaves must be exposed to sunlight to assist in the process of photosynthesis.  Photosynthesis is the process where light energy is transformed into chemical energy.  Without sunlight, plants cannot produce chlorophyll.  Chlorophyll is the by-product of the plant by taking sunlight and making energy for the plant to grow.  For good and healthy turf, you need several hours (5 to 8) of sunlight each day.

You ever put down a tarp or something else over your turf for a couple days?  Did you notice that it started to turn yellow or just wilt in general?  That’s because you blocked the sun.  Fallen leaves will have the same effect as laying out a huge tarp. 
One thing you should consider is removing all the leaves entirely.  I get lots and lots and lots of leaves in my yard.  If you have this affliction, I feel your pain.  I know raking by hand is tough, especially if you have a large turf area.  Blowing them can be difficult as well.  I’ve tried using a Billy Goat, like a big lawn vacuum.  The bag for that thing would fill up in seconds.  I also have a tow behind lawn sweeper.  I spend more time emptying that thing than actually dragging it around to sweep up the leaves.  Fall leaves can be a tough mission to accomplish – especially if you are an army of one.
I’ve inserted a picture that shows one of my sub-contractors (a local landscape company near Mount Vernon, VA – Green Blades) removing my leaves.  For a flat fee, sometimes they show up two or three times during the fall leaf drop period.  What they usually do is blow the leaves onto a huge tarp and drag the tarp to the front curb.  Many municipalities (or other units of government) have leaf pick up from the curb.  I just pay the few extra dollars to have the landscape company haul away the leaves each time.  The landscape company uses the same equipment as the government for hauling away the leaves.  It is a big vacuum that is towed behind a large truck.  The workers rake the leaves into this huge suction tube about 20 inches in diameter.  I like that much better.  I drink coffee and supervise.
Complete leaf removal – however you do it – is my first recommendation.  Listen, you can’t do your other lawn and landscape winterization missions (dethatching, fertilizing, aerating, bed mulching, etc.) if you have a serious layer of leaves in your yard.  And, you may run out of time for your other winterization missions if you are working leaves all the time.  Get the leaves collected; and get them gone.  That’s what I say.
Another course of action answers the second question.  That course of action is “chopping up” or “mulching” those leaves.  In most cases, for the standard homeowner, that means running over the leaves with your mower.  But, think about that for a second.  If you have a fairly deep or thick layer of fallen leaves, having them all chopped up does not necessarily alleviate the sunlight exposure issue I discussed earlier.  Remember, you are trying to expose your turfgrass to more sunlight, not just cover it up again with leaves that are in smaller chunks (and those smaller bits would be even more difficult to manage or remove).
In addition, its hard to say at what “amount” or “depth” of leaves would it be disadvantageous to chop them up.  I think you just got to eyeball it.  I can’t really tell you, “Well, newly fallen leaves (and what type of tree?) over a depth of X inches should not be mulched.”  Sorry.  You might have to do your own analysis on that one.
Providing organic material to your lawn, ornamental beds and soil is a good thing.  Having a good amount of organic material in your soil increases aeration and soil tilth.  Mulching leaves certainly assists in accomplishing that mission.  But, are the mulched leaves going to just be left on the surface?  How do you plan to integrate the mulched leaves into the soil?  More questions to think about.
There are other considerations too.  Certain leaves, from certain cultivars of trees, can alter the pH of your soil.  The big, old growth trees on my property are two different kinds of oak.  Oak trees make the soil acidic just by being there – and the leaves make the soil even more acidic.  Generally speaking, oak tree leaves have a pH of 4.3 to 5.3.  That is way below what is desired for most turfgrass soil.  Pine needles, for example, can also increase the acidity of soil.  So, this too may be an argument for complete and total leaf removal. 
If you really have your heart set on mulching your leaves, please make sure you have a mulching attachment and/or mulching blades on your mower.  Mulching mowers chop up leaves (turfgrass clippings, just about everything) more finely.  It basically holds things inside the mower deck longer and chops the stuff up more.  I’ve said this a million times:  A mulching mower is environmentally responsible.  It saves you additional fertilizer applications, improves soil tilth and reduces thatch.  It allows your grass clippings to decompose faster.  Use a mulching mower all the time, every time you mow – not just for your leaves.
And don’t forget about sharp blades.  Can’t say that enough either.  Getting your blades sharpened is okay.  Hopefully, you or the guy doing the sharpening know how to do it correctly.  Unbalanced blades can be dangerous, damaging equipment or even a nearby person.  For @ $70.00 (including shipping) I get new blades every year.  I throw the old blades in the recycling bin.  My mower has a 42 inch deck.  It uses two blades.  I get two sets of blades each year.  I put a new set of blades on the mower at the beginning of the spring mowing season and a put another new set of blades on at the beginning of the fall mowing season.
Hey, I get my leaves removed.  But, guess what I do when I mow in between the leaf removal guys visits?  I mulch my leaves.  Sometimes its not many leaves, but they get chewed up regardless. 
Okay.  I’m gonna wrap this up.  If you live in an area where fall leaves are pretty significant, I highly recommend you get rid of them – anyway you can.  If you are going to mulch them, consider some of my points here.  I think there may also be a happy medium and cost effective way to do a little of both – removal and mulching.  That would be an excellent exercise in negotiation with a local landscape company.  They remove some; you handle the rest.  A lot of it also depends on timing, the climate during a particular fall, etc.
Also, look on my blog post, “Leadership by Example”.  I will post some more recent photos of my lawn from this past fall, the fall of 2015.  You will not see many leaves.  But, you may see a few that have been chopped up.
Get rid of your leaves.  I can guide you.

Native, Alien and Invasive Plants

Posted on July 20, 2015 at 1:34 PM Comments comments (80)
I always advise my customers to use “native” plants in their landscapes.  Nothing makes me crazier than when a customer wants to use some palm tree native to Borneo in their landscape here in DC, MD or VA.  Although I’m writing with my horticulture hat on right now (versus my turfgrass hat), this concept goes back to what I’ve said all along.  You must choose the correct type or species of turfgrass based on the region in which you live.  But, with larger shrubs and trees, that gets a little more complex.  If you want mission success in your landscape, you need to know a little bit about where you live – what are the conditions; the soil, the amount of sun, the weather, moisture…all sorts of considerations.
In Virginia, we make it easy.  You live in one of three regions – the coastal plain, the Piedmont or the mountains.  Each one of these areas has specific considerations and therefore has specific plants that will do well in each of those regions.
Why use native plants?  What’s the big deal?  Well, in this blog post I’m going to discuss some of the issues surrounding native, alien and invasive plants.
Native type plants have evolved within a specific area and are dispersed throughout that area without human intervention.  They could be called “indigenous” to a geographic area.  Native plants form the primary component of the living landscape and provide food and shelter for native animal species.  Native plants co-evolved with native animals over many thousands to millions of years and have formed complex and interdependent relationships.  Our native fauna depend on native flora to provide food and cover.  Many animals require specific plants for their survival.
How long must a plant species be located in an area in order for us to consider it native to that place - two hundred years, since colonization, since before agriculture began?  For example, for those who consider two hundred years sufficient, Queen Anne's lace would be native - yet we know from historical records that this plant has a European origin.  We usually depend on local plants, the uncultivated plant life of a given region, to tell us which plants are native.  However, these inventories are sometimes inconsistent and are subject to repeated debate.  I guess only fossil records can really prove that a plant evolved in a particular place, but even fossils can be misinterpreted.
If we randomly pick a spot in time and say "plants here before this date are native," we may not be acknowledging that for centuries, indigenous peoples, traders, explorers, and botanists have had an impact on local floras with their activities.  Geopolitical and environmental boundaries also play a role in defining native plants.  To say a plant is "native to North America" or "native to Virginia" implies that it is suitable for growth throughout North America or Virginia, when in fact it may only occur naturally in limited microclimates or sections and thus only be suitable for growth in equally limited scenery situations. 
Using native plants in your landscape means using plants that are better suited for that region.  Native plants use less water, require less fertilizer and less pesticides.  As I alluded to earlier, native plants also increase the presence of desirable wildlife.
Ecotypes (sometimes called ecospecies) describe a genetically distinct geographic variety, population or race within a species, which is adapted to specific environmental conditions.  Typically, ecotypes exhibit phenotypic differences (such as in morphology or physiology) stemming from environmental heterogeneity and are capable of inter-breeding with other geographically adjacent ecotypes without loss of fertility or vigor.  Basically, ecotypes are the same species that are found in different habitats and have evolved specific adaptations to their differing environments – taxonomically equivalent to a “sub-species”.  Red maple, for example, is native from Florida to Canada, but some sub-species have adapted to dry or wet sites, cold or warm climates.  Although technically red maple is native to a large section of North America, one ecotype will not necessarily perform successfully in another site because it is not adapted to the site's conditions.  The larger the geographic range of the species, the more occasion there is for dissimilarity.  
Exotic plants, also known as non-native, introduced, “non-indigenous” or alien plants, are species that occur in cultivation or in the wild.  These plants may have been transported across boundaries by people and their activities.  Sometimes they are species introduced intentionally or accidentally, into a new region by humans.  Over time, many flora and animals have expanded their ranges slowly and without human assistance.  As people began cultivating plants, they brought beneficial and favored species along when they moved into new regions or traded with people in distant lands.  Humans became a new pathway, enabling many species to move into new locations.
According to The Flora of North America, one-fifth to one-third of the plant species encountered north of Mexico had their beginning in other continents.  Several exotic plant introductions, such as lily-of-the-valley, day lilies, and daffodils, have become naturalized, meaning that they have succeeded in reproducing and spreading to a restricted extent on their own.  Unlike invasive plants, most naturalized plants are not a severe threat to other species or to an ecosystem.  In fact, the ability to naturalize is often considered an advantageous feature in horticulture.  Wildflowers can be true natives or introduced plants that have been naturalized for over two hundred years.
A small percentage of naturalized exotic plants become invasive.  Invasive plants are those that reproduce quickly, displace many of the other species in their domain, and are difficult to eradicate.  Invasive plants are species that cause health, economic or ecological damage in their new range.  More than 30,000 species of plants have been introduced to the United States since the time of Christopher Columbus.  Most were introduced intentionally, and many provide great benefits to society as agricultural crops and landscape ornamentals.  Some were introduced accidentally, for example, in ship ballast, in packing material and as seed contaminants.  Of these introduced species, fewer than 3,000 have naturalized and become established in the United States outside cultivation.  Of the 3,500 plant species in Virginia, more than 800 have been introduced since the founding of Jamestown.  The Virginia Department of Conservation and Recreation currently lists more than 100 of these species as invasive.  In the United States, invasive species cause an estimated $120 billion in annual economic losses, including costs to manage their effects.  Annual costs and damages arising from invasive plants alone are estimated at $34 billion.  Purple loosestrife in the northern US and kudzu in the southern states are classic examples of invasive plants that profoundly affect the landscape.  In Fairfax County Virginia, bamboo is an extremely damaging and problematic invasive plant.  Invasiveness can range from the minor nuisance of garden plants, such as Lamb's ears, that tend to edge out their neighbors, to the other end of the spectrum, where the melaleuca tree from Australia is literally drying out Florida's marshes to meet its high water requirements.  Melaleuca is an example of an exotic species that is considered a serious invader because it enters disturbed lands, colonizes them and changes the ecology of them in detrimental ways.
One of the main reasons people promote native plants is to avoid the devastation that invasive plants may bring on landscapes and forests.  Exotic introductions that do become invasive, like kudzu, multi flora rose, and honeysuckle are a costly menace nearly impossible to control, much less eradicate.  Why do a small percentage of plants exhibit invasive tendencies, while the majority of plant introductions are benign or beneficial?  The answer lies in the combination of two factors: traits that invasive plant species share and traits of the site that make it susceptible to invasion.  No plant is inherently invasive under all circumstances.  Although more often it is exotic introductions that invade, native plants can also become invasive pests.  Native grape vines like fox grape form suffocating thickets over shrubs and rapidly climb trees, threatening to out-compete their hosts for light.  Though native to eastern and central North America, wild grape is an indisputable pest.  Other native plants that are often invasive include blackberries, poison ivy, wild onions and cattails.  Just as with exotic introductions, it is a small percentage of native species that cause problems.
Native plants have an important role to play in modern landscaping.  Arguments that are made in favor of native plants include lower maintenance, regional uniqueness, biological diversity, and wildlife habitat.  One theory holds that native plants are easier to care for because they have evolved in a place over many years, developing resistance to climatic extremes, insect feeding, disease pathogens and other stresses of the local environment for which non-native plants may not be prepared.  This may be true in some cases; however, it is important to note that native plants placed under stressful conditions fare no better than exotic ones if the plant is not carefully matched to the site.  Some exotic plants actually perform better and require less maintenance because of the qualities they were selected for, and because their insect predators and disease pathogens are frequently not imported with them. 
Another factor to consider is the interaction of native plants with the “built up”, urban or suburban non-native environment.  In an urban setting, for example, there is no planting site that approximates what would have been there prior to urbanization.  The original landscape in both cities and suburbs often has been changed so completely that the microclimate, soil type, soil hydrology, and insect populations no longer are what they were when the native plants of the area evolved.  To put a native tree, for example, in a median strip planting on a downtown street because it is native to the surrounding countryside would be foolish unless the tree is known to tolerate the heat of the asphalt, car exhaust, salt from the snowplows, a limited root zone, intermittent flooding, and periodic drought.
If native plants are used simply because they are native, without proper regard to site conditions, the results may be insufficient.  The most critical issue is not native plants versus exotic plants - it is appropriate versus inappropriate plant selection, given the constraints and opportunities of the site.  The more closely a plant's characteristics match the site's characteristics, the better chance for the plant’s survival and vigor.  If a native plant meets those requirements, by all means use that plant.
While we can and should strive to use plants long found in our region, perhaps the term native plants should be used with some modesty.  Using diverse plantings will create beauty and prevent the susceptibility to disease that can come from large scale single-species plantings, avoiding disasters such as that of the American elm in the mid-twentieth century.
In the quest for a diverse, healthy landscape, which may be a mix of native and exotic species, references are available both to help find the right plant and to avoid the trouble makers.  A little research before selecting plants can save time, money, and aggravation.  Or, you can consult with someone like me.  Reference guides may warn that a plant is invasive under certain circumstances, but they may not, and nursery catalogs frequently won't.  Phrases like "a very vigorous grower" can be euphemisms for potential invasiveness.  Don’t be fooled.  Treat such phrases as red flags.  Be sure to look in more than one plant reference to gather more than one perspective on any species you have in mind, especially if you suspect it may be invasive.  After invasive potential is ruled out, the physical limitations and possibilities of the site should be the first and most important consideration in the exciting process of selecting new plants for our landscapes.

Wild Onion & Wild Garlic

Posted on May 6, 2015 at 2:03 PM Comments comments (86)
In the early spring here in the mid-Atlantic region, I started to see some common weed activity.  What is very visible this time of year is wild onion and wild garlic.  Wild garlic (Allium vineale) and wild onion (Allium canadense) are winter perennials.  They emerge in late fall from underground bulbs and grow through the winter and spring.  In late spring, aerial bulblets are formed and the plants die back in early summer.  The underground bulbs can persist in the soil for several years.  While both have thin, green, waxy leaves, those of wild garlic are round and hollow, while those of wild onion are flat and solid.  Oddly enough, the garlic smells like onion and vice versa.
Mowing will not kill wild garlic or wild onion.  However regular mowing can weaken the plants and prevent them from setting seed.
Unfortunately, there are no pre-emergent herbicides that will control wild onion or wild garlic.  They must be treated with post-emergent herbicides.  Perseverance is the key.  These plants will need to be sprayed more than once and for more than one season.  One trait that makes control difficult is that both have a slender, shiny leaf to which herbicides don't readily adhere.  Unlike most weeds, mowing wild garlic or wild onion immediately before applying an herbicide may improve uptake.  After application, do not mow for at least two weeks.
Treat wild garlic and wild onion in November and again in late winter or early spring (February or early March) before these plants can produce the next generation of bulbs.  However, be careful not to apply most weed killers onto Centipedegrass or St. Augustinegrass during their spring “green up” period.  Inspect the lawn again in the spring and the next fall, and treat if necessary.
Imazaquin, the active ingredient in Image Nutsedge Killer, will provide control for wild garlic and wild onion.  N.B - This product should not be used on fescue and should not be applied to warm season turf during green up in spring.  Wait at least 1 & 1/2 months after treatment before reseeding, winter overseeding or plugging lawns.  This product is not for use on newly planted lawns, nor on winter over-seeded lawns with annual ryegrass.
Three-way broadleaf herbicides containing 2,4-D, dicamba and mecoprop (look for any or two or all three in a spray) will provide control of wild garlic and wild onion with repeat applications. Examples of these products are Bayer Advanced Southern Weed Killer for Lawns, Spectracide Weed Stop for Lawns – for Southern Lawns, Lilly Miller Lawn Weed Killer, Southern Ag Lawn Weed Killer with Trimec, and Ferti-lome Weed-Out Lawn Weed Killer.  These products can be used safely on most turfgrasses, but reduced rates are recommended when applying to St. Augustinegrass or Centipedegrass.  Apply during November, very early spring, and again the next November for best control.  N.B. - Do not apply these herbicides during the spring green up of warm season turfgrasses, or over the root zone of nearby ornamental trees and shrubs.  Do not apply these products to newly seeded grasses until well established (after the third mowing).  Treated areas may be reseeded three to four weeks after application.  Always check the product label for rate of application and to determine that it is safe for use on your species of turfgrass.
Metsulfuron (such as Manor and Blade) is an herbicide which is packaged for landscape professionals and gives very good control of wild onion and garlic.  Due to the cost of these selective herbicides, it may be more economical to hire a landscape professional for weed treatment.  Metsulfuron can be used on Bermudagrass, St. Augustinegrass, Centipedegrass, and Zoysiagrass.  
The addition of a non-ionic surfactant (such as Southern Ag Surfactant for Herbicides) may be a good idea too.  It is required at 2 teaspoons per gallon of spray mix for best control.  Read my blog post on "Wetting Agents".  A non-ionic surfactant will help the herbicide adhere to the leaves for increased penetration.  Do not apply Metsulfuron to a lawn if over-seeded with annual ryegrass or over-seed for 8 weeks after application.  Do not plant woody ornamentals in treated areas for one year after application of Metsulfuron.  Do not apply Metsulfuron herbicides within two times the width of the drip line of desirable hardwood trees.
Glyphosate, the nonselective herbicide found in Roundup Original, Eraser Systemic Weed & Grass Killer, Quick Kill Grass & Weed Killer, Bonide Kleenup Grass & Weed Killer, Hi-Yield Super Concentrate Killzall Weed & Grass, Maxide Super Concentrate 41% Weed & Grass Killer, and Southern States Grass & Weed Killer Concentrate, will also provide control of wild garlic and wild onion.  If you are unable to prevent glyphosate from getting on desired actively growing grasses, a selective herbicide should be used.  To do the least damage to your turfgrass, apply glyphosate only to warm season grasses during winter, when they are completely dormant.  However, during mild winters, the turfgrass may not be completely dormant.  I recommend not messing with a non-selective herbicide like glyphosate.
One answer to these weeds in flower beds and high-quality lawns is some smart pulling.  Sometimes they are tough to pull.  The entire clump should come out easily when pulled gently but firmly after a good, soaking rain.  This is one of the many benefits of improving your soil — weeds that sprout out of nice, loose, rich soil that contains a lot of organic matter practically pull themselves out. Conversely, weeds that grow in lousy, compacted clay are usually firmly anchored.

Pulling from wet soil is always more productive than pulling from dry soil.  So go out after a rain, reach down to the soil line and tug gently; that's how you get the underground bulb out completely.  If you only snap them off at the soil line, the plant is not harmed; you spend the same amount of time and energy as someone who does it correctly, but get no benefit.  Personally, I have about a 50% success rate each time I go after these weeds by pulling them in wet soil.  But, over time, they will be eradicated.

You can also remove tight clumps with a sharp, long-handled “poachers spade”, which is also a very useful tool for transplanting bulbs, plants and rabbit hunting in Merry Old England.

Single sprouts are the most annoying and time-consuming to deal with.  If you have a large area with mostly single plants, clear small sections at a time, being sure to pull slowly and get the bulbs completely out.  Start with highly visible areas and give yourself several seasons to do it all; if you've been cursing them for the past five years, you can't expect overnight eradication.  And don't let the un-pulled plants in other areas set seed while you're doing this; mow or weed-whack the tops off those miscreants before they can procreate.
I really don’t see wild onion and wild garlic as a great threat to the safety and security of your turfgrass.  I mean, it can get out of control.  Just like everything else, if you stay on top of it, little by little, it will go away.  You know how I am about consistency.  These weeds do violate my consistency standards.  And, you have to be careful about any applications.  See where I underlined a couple things.  Stick to it and you will be victorious.


Posted on March 9, 2015 at 12:14 PM Comments comments (1141)
In this blog post, I will be discussing SOD.  Sod is a good thing.  It is turfgrass that has already germinated and is growing, like a living carpet.  And it already includes a layer of some decent topsoil.  For the most part, it is some mature turfgrass plants that have been professionally grown.  It is usually harvested into slabs, then the slabs are rolled up.  If done correctly, it can be a readymade lawn.  If done incorrectly, it can be a huge waste of time, money and other resources.  As usual, my blog post here is geared toward the “do-it-yourself” turfgrass warrior.  Many sod farms will do delivery, site preparation and installation.  Sometimes, that’s the bulk of the cost…not just the price of the sod.  But, if you did well on your last physical fitness test, installing sod will be no big deal.
I have not yet had a customer who has installed a complete yard or lawn of sod.  But, I do use sod quite a bit for repair, filling bare spots, etc.  In some cases, areas where I’ve used sod have been quite large.  I’ve also used sod in areas where there was an infestation of some sort.  Of course, in that area, before any preparation, one must kill or mitigate whatever the problem was in that area.  For example, if you have an area in your cool season turf infested by Bermudagrass or Poa Annua, all that stuff has to be decisively engaged with an herbicide before you start site preparation, much less installation.  Old, dead sod needs to be removed or tilled into the soil.  I’ll get into that.  Let’s say for argument’s sake, in the case of this blog post, that there are no real serious problems and you are just sodding an area because you feel like it.
A Few Words About Sod
Sodding provides many advantages over seeding:
§ Creates an instant green lawn or recreational surface.
§ Gives immediate erosion control.
§ Eliminates dust and mud.
§ Eliminates weed control during establishment.
§ Can be used quickly.
§ Can be established almost year round.
§ Can get the best turfgrass varieties from producers.
§ Can be used for total installation or repair of smaller areas.
Selecting the Type of Turfgrass
This goes back to my earlier blog posts on turfgrass selection.  A quality lawn results from using the right grass species and/or variety, proper planting and establishment, and sound management.  Planting the right turfgrass for your site reduces the need for pesticides and other amendments.  This goes for any method of establishment – sodding, seeding, sprigging, etc.  The most important step for the Turfgrass Warrior is selecting the proper turfgrass for the environment.  Turfgrasses are perennial, so turfgrasses are expected to live indefinitely with proper management.  Because of this, choose cautiously from among the various species and varieties.  Turfgrasses that provide winter lawn color in most areas of mid Atlantic are known as cool-season grasses.  Grasses which go dormant after the first hard frost, and stay brown through the winter months are known as warm-season grasses.  The warm season grasses generally need less maintenance as their water requirements are lower, and their shorter growing season requires less mowing per year.  Turfgrass species will not perform equally in the different climate, soils, and management programs that are found in the mid Atlantic region.
What type of sod do you need?
Most types of sod being grown in the mid Atlantic are Kentucky bluegrass blends, tall fescue or tall fescue-Kentucky bluegrass mixtures, Bermudagrass, and zoysiagrass.  Each type is best suited to particular uses and geographic areas in mid Atlantic. 
Most states in the US have their own organizations that “certify” turfgrass (and sometimes crop) seed.  At the national level, we have The National Turfgrass EvaluationProgram (NTEP).  NTEP has expanded to the evaluation of seventeen turfgrass species in as many as forty U.S. states and six provinces in Canada.  Information such as turfgrass quality, color, density, resistance to diseases and insects, tolerance to heat, cold, drought and traffic is collected and summarized by NTEP annually.   In Maryland, it is the state Department of Agriculture that certifies seed. 
Sod in Virginia is grown in the Virginia Crop Improvement Association (VCIA) sod certification program.  This sod must meet established standards of quality, which also qualifies the sod to be marketed under the Virginia Department of Agriculture’s "Virginia's Finest" program.  VCIA certified sod or "Virginia's Finest" is sod of high quality, meeting rigid standards requiring pre-planting field inspections, prescribed varieties and mixtures, periodic production inspections, and a final pre-harvest inspection.  Quality sod contains excellent turf varieties with good sod strength and has no serious insect, weed, or disease problems.
Before Contacting Growers
What’s the first thing you need to do before you do anything in your lawn or landscape?  You should have a soil sample taken.  Give me a call.  Get that done at least one month prior to preparing the soil so you can follow the lime, sulfur or fertilizer recommendations prior to sod installation. 
Measure the area to be sodded in square yards or square feet.  Sod isn’t cheap.  Don’t get more than you need.  Here’s some conversions:
1 square yard = 9 square ft.
111.1 sq. yds. = 1,000 sq. ft.
1 acre = 43,560 sq. ft.
1 acre = 4,840 sq. yds.
With regard to safety, make sure you have the proper vehicle to transport the amount of sod you need and how many trips you will need to make.  The safe carrying capacity of vehicles varies (in square yards):
Medium Size Car: 5 to 10
Half Ton Pickup: 25 to 50
One Ton Truck: 150 to 200
Two Ton truck: 300 to 350
Tandem (10 Wheel): 500 to 600
Tractor Trailer (18 Wheel): 1,000 to 1,100
If the sod is wet, it is real heavy.  Less sod can be carried when it is wet.  Dry sod weighs about 20 to 25 lbs. per square yard whereas wet sod can weigh 30 to 40 lbs. per square yard.  A pallet of sod will contain 50 to 75 square yards (450 to 675 sq. ft.) of sod.
When Contacting Growers
You need to know how many square yards or square feet of the particular type of sod you want to purchase.  Remember that some sod comes with netting to aid in harvest.  I hate that stuff.  If you ever have to work that area again, that netting is terrible.  Asking about netted sod is an important question.  Netted sod may not be desirable if you anticipate cleated traffic on the sodded area (e.g. athletic fields).  Determine what services each grower you contact can provide and the cost of those services (e.g. pallet charges).  Sod-farm services vary and can include any of the following:
  • Cut your own sod, generally sold by the acre.
  • Pick up sod on pallet at farm.
  • Delivery to site.
  • Site grading, fertilization, installation.
  • Post-installation lawn service programs.
Once you select a grower, call as far ahead of installation time as possible to ensure the sod will be available when you need it.  And, you want to make sure that the sod was harvested just prior to installation.  Get fresh sod.
Site Preparation
There are no shortcuts to soil preparation when sodding.  Normally, site preparation for sod is almost identical to preparation for seeding to ensure transplanting success.  Remove existing grass and/or till the soil down to a four inch depth.  Allow time for the soil to settle and then establish the final grade.  To greatly improve the chances for long-term success, incorporate fertilizer and lime/sulfur according to the soil test/lab recommendations.  Rake the area until smooth and be sure to remove stones and other debris.
When the Sod is Ready for Pickup or Delivery
Prepare the site for installation prior to pick-up or delivery.  If the soil at the installation site is extremely dry, lightly water it 12 hours prior to installation.  Sod is perishable and should be installed within eight hours of harvest!  Wear work clothes you don’t mind getting real dirty.  If you are buying sod by the roll and are concerned about keeping your vehicle clean, bring something on which to lay the sod.  Do not overload your vehicle.  On hot days, when sod will be transported for an hour or more use light, vented covers to reduce drying and heat buildup.  If buying VCIA Certified Sod, request the certification labels with each load you purchase.  In fact, if you buy sod from anywhere, see if they have the certification labels.  That’ll teach ‘em you mean business!
Installing Your Sod
Lightly rake the area to be sodded just prior to installation.  Sod survival is greatest when installed on relatively loose and moist soil that is cool.  Do not install sod on grass, debris, or rocks.  Lay the first line of sod along a straight line such as a driveway, sidewalk, or use a string stretched between two stakes.  Then stagger the sod pieces in the adjacent rows in a "brickwork" fashion.  Since sod pieces may shrink after installation, push the sod pieces together tightly.  Try to minimize soil compaction in the installation area by using wheel barrows to move the sod.  Plywood boards laid in heavy tracking areas will minimize compaction.  Roll the sod with a heavy hand roller after you lay it to press roots to the soil.  Saturate the sod with water immediately after installation, wetting the soil under the sod to a four inch depth.  Examine the soil under several pieces of sod to ensure proper wetting.  You might need to water it as deep as 6 to 8 inches.
Maintaining Your Sod
Begin mowing the sod with sharp blades as soon as it is rooted.  That might take a couple months.  Mow frequently enough so that you never remove more than one-third of the existing green tissue.  Mow it high.  Mow Kentucky bluegrass and tall Fescue sods at least two to two and one-half inches and Bermudagrass and Zoysia at one-half to one inch.  From October through April, apply water every second or third day for three weeks, even if it rains. The rule is to make sure the soil is wet to a three to four inch depth.  In hot weather (above 80 degrees F) water the sod daily, wetting the soil thoroughly until the sod is well rooted.  After the sod is well rooted, irrigate to prevent drought damage.
Sod can be installed almost anytime of the year.  The best time to lay sod, however, is in late summer and early fall when temperatures are cooler but grass continues to grow.  Spring is the second best time to lay sod and is the preferable time for warm-season grasses such as centipede, zoysia, Bermuda, and St. Augustine that become dormant in the winter.  Avoid installing sod in summer as the extra water required for establishment could result in blight and disease.
Sod can be a super resource.  But, you shouldn’t just throw it down and expect it to be beautiful.  Just like anything else, if you just throw it down, it will probably look like you just threw it down.  You don’t want mission failure in this type of operation.  You need to PLAN, PREPARE then EXECUTE.  If you do that, it will pay off in the long run.

Wetting Agents

Posted on February 3, 2015 at 2:38 PM Comments comments (86)

Here’s another “high tech” blog post.  Like my last blog post, this topic may be out of reach for the standard turfgrass warrior.  But hey, if you’ve read my blog posts from the beginning, you will see we are past the 100 or 200 level courses.  We are now in advanced studies!  As I’ve said before, I think it is good to know about some of the many issues out there when it comes to turf care and maintenance.  You can never know too much!

In this post, I’m going to discuss soils that are resistant to water.  Soils that are difficult to “wet” (wet – used as a verb in this case) are branded as hydrophobic soils.  The soil repels water.  The soil is difficult to wet because it resists penetration by water.  The infiltration of water into this type of soil can often be enhanced by applying a non-ionic surfactant, more commonly called a wetting agent.  Wetting agents are detergent-like substances that reduce the surface tension of water, allowing it to infiltrate and wet the soil more easily.  Soap is one of the most common surfactants.  And a “SURFace ACTive AgeNT” causes change to the soil at the surface.

Understanding how wetting agents work will give you a better idea of the situations for which they are best suited.  There are three “forces” that act upon the movement of water into the soil.  The first is gravity.  Gravity is a constant force that pulls the water downward.  The second force is cohesion, the attraction of water molecules to each other.  Cohesion is the force that holds a droplet of water together.  It creates the surface tension, which causes the droplet to behave as if a thin, flexible film is covering it, keeping the water molecules apart from other substances.  The third force is
adhesion, the attraction of water molecules to other materials.  This force causes water molecules to adhere to other objects, such as soil particles.

The chemist on my staff, Jake, says I should mention that the forces discussed above are actually electromagnetic forces.  And, Jake says I should be more precise by explaining the properties of cohesion and adhesion, specifically detailing hydrogen bonding and capillary action.  Okay, Jake looks at everything down to its molecular structure.  If he gets real excited, he’ll start seeing atomic valences.  That’s what chemists do.  That’s why I engage the best minds in the business to ensure you have flawless analysis.

Hydrogen bonds form between the hydrogen of one water molecule and the oxygen of the neighboring water molecule.  In ice, all the molecules of water are held in their places by a network of hydrogen bonds.  In water, only some molecules at any given time will be attached, in a constantly changing process.  The hydrogen bonds have to be broken in order for ice to melt, and more for water to become steam, and because this takes a lot of energy we see a higher than expected melting and boiling point.

Capillary action is caused by the water molecules pulling one another along via the hydrogen bonds.  Surface tension is caused by the water molecules on the surface holding onto one another in a network, like giving enough support for a small bug to walk on the surface.  If the bonds within a liquid are strong enough, then the liquid will have a large surface tension.  Since hydrogen bonds are one of the strongest intermolecular forces known (apart from covalent and ionic bonds) liquids with large surface tensions tend to have hydrogen bonds.

With regard to capillary action, there are two forces (Watch Jake tell me it is an electromagnetic force.) acting on a molecule of the liquid: an attractive force exerted by other liquid molecules, and another attractive force exerted by the walls of the capillary.  (A capillary is like a small tube or straw inserted in the water.)  Hydrogen bonds are an example of the attractive forces that can be exerted by the liquid molecules (e.g. between water molecules, or between ethanol molecules), or the attractive forces that can be exerted by the capillary walls.

By considering the strength of the hydrogen bonds between the molecules in a liquid and the strength of the attractive forces between the capillary wall and the liquid molecules, one can determine whether capillary action can take place with the liquid being observed. 

The effects of these forces can also be simply illustrated by placing a drop of water on a paper towel and another drop on a piece of wax paper.  On the paper towel, the force of adhesion between the water molecules and the paper molecules is greater than the force of cohesion that holds the water molecules together.  Therefore, the water droplet spreads out and soaks into the paper towel.  On the wax paper, the water "beads up" - that is, the droplet remains intact.  The water molecules are not attracted to the wax that coats the paper's surface.  Instead, the water molecules stick to each other.  When the adhesive forces between water molecules and an object are weaker than the cohesive forces between water molecules, the surface repels water and is said to be hydrophobic.

Most wetting agents have polar and non-polar distinctiveness.  These characteristics allow the water to cling to, or even soak into certain organic matter.  In hydrophobic soils, the soil particles are coated with substances that repel water, much like the wax coating on leaves.  In studies of localized dry spots in turfgrass, the soil particles were found to be coated with a complex organic, acidic material that appeared to be similar to the mycelium of a fungus.  My blog post “Turfgrass Diseases” discusses funguses a little.

Nearly all of the soil wetting agents used in turfgrass management are non-ionic surfactants.  Non-ionic surfactants, or surface active wetting agents, decrease the surface tension of water, allowing the water molecules to spread out.  When applied to water-repellent soils in high concentrations, surfactants can improve the ability of the water to penetrate the soil surface and thus increase the permeation rate.  Remember, I’m talking about water penetrating soil, not water penetrating the surface of leaves on plants.

Hydrophobic soils can cause problems on golf courses, playing fields and other turf areas.  Water repellant soils can also be found in gardens, shrub beds, nurseries, greenhouses, and in open fields.
Golf course greens keepers commonly report troubles with localized dry spots on their greens.  Nursery operators sometimes encounter hard-to-wet soil in pots and greenhouse beds.  And, some farmers who work soils high in organic matter complain that the soil wets too slowly, reducing crop output.  Problems with hydrophobic soils are also commonly associated with citrus production areas down south.  In some locations where mine wastes have been deposited, and with burned-over forestland and grassland, there tends to be hydrophobic soils.

If water cannot readily enter and wet the soil, the availability of moisture to plants is reduced, decreasing the germination rate of seeds, the emergence of seedlings, and the survival and productivity of plants.  Lack of water penetration in the soil also reduces the availability of essential nutrients to plants, further limiting growth, health and productivity.  In addition, water that cannot penetrate the soil can run off the surface and increase erosion.  Water repellency often occurs in localized areas.  As a consequence, the soil wets inconsistently and dry spots occur.

In the majority of situations, low water penetration rates are caused by factors other than water repellency.  Water naturally moves more slowly into fine-textured (clay) soils because the spaces between the soil particles are just too small to allow rapid water movement.  Cultural practices that promote good soil tilth and particle aggregation can improve the infiltration rate on these soils.  On the other hand, activities that lessen soil tilth and aggregation make problems worse.  Tillage pans (an induced layer of soil which has high bulk density – see my blog post on “High Traffic Areas”) and compaction by personnel and/or machinery also reduce infiltration.  In these circumstances, wetting agents will have little or no effect.  Remember what I’ve said about soil compaction.  There’s not much you can do about it except physically manipulate the soil.  There’s nothing you can dump out of a bag or a jug that can reverse soil compaction.

How effective are these wetting agents?  Research has been conducted on hydrophobic soils and on the effectiveness of wetting agents.  Some of these studies have focused on localized dry spots in turf grown on naturally sandy soils and on formulated materials high in sand content.  As one would expect, these dry spots become a grave turf management dilemma during the summer months, especially during periods of drought.  In spite of frequent irrigation, the soils in these spots refuse to give in to wetting, resulting in patches of dead or severely wilted turf.  The water applied wets the turf but does not adequately penetrate the soil surface to reach the root zone.  This is another key – not penetrating leaves (like I said before), but penetrating the soil AND penetrating the soil deep enough to reach the root zone.

In one study of dry spots in turfgrass, it was found that the hydrophobic condition was restricted to the top 1 inch of soil.  The infiltration rate in the dry spots was only 20 percent of that measured in normal areas.  In other analysis, the hydrophobic layer was from 5 to 18 inches thick.  Keep in mind, many different species of turf, crops, shrubs – all kind of plants have varying root zone depths.  Applying wetting agents reduced the severity of the condition, but the most effective solution was to use wetting agents in combination with core aeration.  Also, keeping the soil consistently moist seemed to be the best protection against the increase of dry spots.  Allowing the soil to dry out intensified the predicament.

Many agronomists and other specialists in the management of turfgrass, range land, and forestland have tested the effects of wetting agents on the rate of water infiltration into disturbed and undisturbed soils.  Undisturbed soils are like soils in their natural state, whereas disturbed soils are soils where the soil structure is not in its natural state.  Somebody has messed with it – either through farming, construction, etc.  In general, the results have shown that the extent of improvement in infiltration rate is affected by the type of wetting agent used, its dilution, earlier use of wetting agents on the soil, and the water content of the soil at the time water is applied.  Numerous studies have shown that the permeation rate of a hydrophobic soil, once it has been wetted, remains higher than it was before it was wetted, even if it is allowed to dry out again.

Studies have also been conducted to determine whether wetting agents have any toxic effects on plants.  In tests on barley shoots grown hydroponically (that is, in a nutrient solution rather than in soil), a wetting agent concentration of 300 parts per million (ppm) in the solution caused a reduction of about 70 percent in the dry weight of the shoots.  However, the same concentration in water applied to barley shoots growing in soil or in a sand-peat mixture increased shoot growth only slightly.  When wetting agents are applied to soil, the concentration would have to be much higher than 300 ppm before plant growth would be impaired.

Just like many of the products I have discussed in earlier blog posts, you have to take a hard look at what producers or manufacturers are saying.  Occasionally advertisements for wetting agents and the labels on these products claim or imply that they are universally effective under all soil conditions.  These claims are not always truthful.  Tests in which wetting agents have been applied to normal, “wet-able” soils have failed to substantiate these claims.  Some of these exaggerated claims are that these products will increase water infiltration, plant population, nutrient uptake, and crop yield.  They are effective only on soils that are at least somewhat water repellent.

A number of techniques can be used to determine the extent to which a soil is water repellent.  The most precise methods require laboratory facilities, but several tests can be conducted in the field.  The one real simple and most useful test is simply to place a drop of water on the soil surface and observe how long it takes to penetrate the soil.  On a “wet-able” soil, the water drop will flatten and move into the soil within a few seconds.  On more water-repellent soils, the drop of water will stand more upright and will move more slowly into the soil.

As stated before, water infiltrates more slowly into fine-textured soils than into most coarse-textured soils.  Poor tillage practices can also reduce penetration rates.  Before spending money on a wetting agent, be sure that slow infiltration is being caused by water repellency, not some other factor (Like soil compaction!).  Wetting agents will improve infiltration rates only in soils that have water-repellent properties, regardless of their texture, tilth, and aggregation.


Posted on January 5, 2015 at 4:06 PM Comments comments (104)
This blog post may be somewhat “high tech”, or, as a minimum, a little odd.  I don’t think it is one of your more common turf topics.  This topic may be out of reach or not feasible for many homeowners.  This topic may be more suited for commercial turf managers, like those who manage athletic fields and golf courses.  But, I think its good to explore these topics for three reasons:  1.  It is good training for a homeowner / turfgrass warrior.  2.  This post may discourage some homeowners / turfgrass warriors from trying something crazy and wasteful with these materials or methods.  3.  And, lastly, I can try to impress you with my extensive knowledge.
In this post I will discuss biostumulants.  What are biostimulants?  They are not fertilizers.  They are NON-NUTRITIONAL growth enhancers.  They are basically plant hormones.  Sometimes these are referred to as PGHs (Plant Growth Hormones).  Hormones (in plants, we often refer to them as phytohormones) are chemical messengers regulating normal plant development as well as responses to the environment.  They stimulate root and shoot growth and increase plant tolerance of certain stresses.  Biostimulants can possibly improve photosynthetic efficiency, increase tolerance of drought, heat, UV light, salinity and even diseases.
There are five groups of plant hormones.  They are:
Adscisic Acid
Each of these hormones has a different influence on plant growth.  Some actually inhibit growth, some enhance growth.  That also depends on what the concentration is of these hormones in the plant.  In many cases, normal levels of hormones enhance growth but higher concentrations, above normal levels, inhibits growth.  So, its fairly safe to say, if you try to make up for a shortage of hormones, like you are trying to offset some environmental or cultural stresses, you may get results.  But, if you use too much, there may be no effect, or, growth may halt.
If my understanding of how biostimulants impact plant physiology is correct, it is probably better to use a biostimulant with more than one (of the 5) hormone and apply it prior to the stress taking place.  And, I mean it needs to be applied 4 to 6 weeks prior to the stress.  Repeat applications may be necessary.  Applications would have to continue throughout the entire stress period.  Most biostimulants are formulated as a liquid.  So, dilution in water and conventional spraying are the application methods.
Now, here’s the rub.  Although much of what I’m saying here has been in my studies and research, I first learned about this from Drs. Xunzhong Zhang and Richard Schmidt.  They are professors of turfgrass ecology at Virginia Polytechnic Institute and State University (Blacksburg, VA; also known as VA Tech).  My certification in Nutrient Management was taught by the faculty at VA Tech. 
I think the jury is still out regarding biostimulants.  Although the VA Tech professors have written about and discussed many of their successes, there really is not enough empirical evidence, in my opinion.  There is lots of “anecdotal” evidence of success out there on blogs and such.  And that anecdotal evidence also includes failures.  The universities and manufacturers will even mention “mixed” results.  I have not heard of or seen consistent results anywhere.  Anyone advertising with boastful claims about biostimulants, well, should be taken with a grain of salt or ignored entirely.  Industry and academics need to do a little more work before I’d stand up and say, “This stuff is awesome!  Go getcha some!”
The good news is that turf managers and university professors all state rather unanimously that biostimulants do not harm turfgrass.  There is no evidence of any harm to any species of turfgrass.  I guess the worst thing that can happen is…..nothing.  Or, as I said, it may inhibit growth.  I guess maybe that’s bad enough.
So, if you are really high speed.  You want to try something out of the ordinary.  You can predict the future with regard to upcoming stresses.  You have a big wallet.  You have the right equipment.  And, you got the time – go for it.  Let me know how it works.
But, remember what I’ve said about some “soil conditioners”, “dethatchers”, “all natural root stimulators”, “soil additives” and all that sort of stuff, usually sold out the back door of a horse drawn wagon by the same guys who sell snake oil.  Be cautious.  I’ve seen jugs of different biostimulants (they say BIOSTIMULANT in big letters on the label) that had no biostimulants inside of it.  I’m not kidding.  They have MAYBE some micro-nutrients….or some other goofy stuff; fermented soybean, cottonseed meal….other minerals, vitamins, and enzymes....dehydrated water….please. 
Reading the label would be another invaluable lesson here.
Listen, I’ve been there.  I’m speaking from experience.  I’m the guy several years back that sprayed ground up fish guts on my lawn.  Yep; I fell for it.  Results?  There were no results.  I’m too embarrassed to tell you how much I paid for that stuff.  My neighbors were not happy with the smell but I did make friends with a lot of neighborhood cats and some other fish eating critters out in the woods.
Biostimulants are “doable”.  They can provide some assistance.  You just gotta be smart about any “program” for your landscape that is not tried and true.  Being a squared away turfgrass warrior means not falling for fads or gimmicks and not blowing your hard earned money on….some….some….snake oil.


Posted on December 10, 2014 at 4:12 PM Comments comments (204)
Okay, so you are an over achiever.  Obviously you are if you read this blog.  You do everything yourself.  Not only are you a premier Turfgrass Warrior, you are a do-it-yourself mechanic too.  You do a great majority of the work on your automobiles, ATVs, boats and lawn tractors out in your turfgrass.  A nice, thick stand of turfgrass feels good against your back while you are doing preventive maintenance.  And a big part of that preventive maintenance program is draining and filling fluids.  But, this Saturday in particular is not your day.  You’ve managed to spill a petroleum product on your turfgrass.  You kicked over a bucket, dropped a hose or just didn’t place that collection pan in the exact, correct spot.  Now you’ve got some serious problems.
Dr. James B. Beard and Mr. D. Johns, Department of Soil and Crop Sciences at Texas A&M University, have done some fascinating research on the mitigation of spills on turfgrass.  Believe me; information like this is posted in and around all the equipment and maintenance shops at a golf course.  When you have a high number of sophisticated equipment all over a golf course on any given day, this becomes a critical subject and a major training topic.  And, if you are pulling equipment maintenance out on or adjacent to your lawn, you need to probably have this information close by or committed to memory.
A spill of a petroleum product on your turfgrass is going to do something.  Something’s gonna happen and the impact to your lawn will not be favorable.  There will be some sort of impact.  And, there really is no easy way to “remove” a spill from your lawn.  The best you can hope for is to somehow mitigate the impact.  In fact, that’s kind of the goal of the research that those Aggies I mentioned earlier were doing.  Those Aggies developed some ways we can alleviate these stresses, mitigating some of the impacts, and maybe even lessen the “Recovery Time” of the turf.  In many cases, the Aggies were able to cut the recovery time in half.
Let me list the fluids that I’m talking about: Gasoline, Motor Oil, Hydraulic Fluid, Brake Fluid and Grease.  These items can do horrible things to your lawn and your landscape shrubs and trees as well.  Leaf burn in your lawn begins almost immediately when gasoline is spilled on your turf.  Gasoline can completely kill the turf in the area in less than an hour.  Motor oil has a shiny appearance and takes more time than gasoline (maybe up to 48 hours) to do damage.  Hydraulic fluid is more like gasoline but the leaf kill is not as quick as gasoline.  Most hydraulic fluids also have an odor.  Brake fluid has an odor but turns the turf into a grey color then a yellow color but total leaf kill occurred within 24 hours.  Luckily, grease is usually deposited in small spots and can be removed…to some extent.  Grease has real high viscosity.  Grease does not flow (or percolate) as well as the other petroleum products.
The first thing you must do is REACT QUICKLY.  You need to do your activity within the first 20 minutes after the spill.  That’s why in some places you will see materials always standing by for immediate use in case there is a spill.  You need to be able to start working on the spill immediately.  Do not wait for any length of time because the fluid will percolate into the soil and be sucked into the stomates of the plants very quickly.  Both plants and soil are impacted.  All spills, regardless of type, must be dealt with immediately.
Next, the question is:  What material do I need to use?  Again we turn to our Aggie researchers.  They discovered that granular detergent is a good active ingredient to offset the effects of a spill.  It was able to reduce the recovery time from 8 weeks to about 4 weeks.  The turf still got messed up.  But, the turf did not stay messed up for 8 weeks and was able to recover in about 4 weeks.  Turf managers were able to take further action (tilling, seeding, sodding, plugging, etc.) in a much shorter period of time.  The Aggies said that the detergent needed to be thoroughly drenched with water once the detergent was applied.  They also said the recovery was even better if the suds that were created were removed.  They recommended using a vacuum to remove the suds.  In some of my research, I’ve seen authors refer specifically to “dish soap” versus some other types of detergents; like maybe for laundry or vehicles.  Now, detergent will “disperse” the fluid.  It may reduce the severity of the spill but it may also increase the spread of the problem, over a larger area.
Unfortunately, detergent is not that useful against gasoline or grease.  Another “disclaimer” – nothing is really effective on gasoline or grease.  But, detergent is very helpful against motor oil, hydraulic fluid and brake fluid.  Some other materials used on the spills were activated charcoal and calcined clay.  The activated charcoal and calcined clay were not very useful on motor oil and brake fluid spills.  Using activated charcoal and calcined clay on hydraulic fluid is fairly effective, but not as good as detergent.  But, like I said, neither detergent, activated charcoal or calcined clay works well against gasoline or grease.
Well, while I’m on the topic, might as well discuss some other spills on turfgrass.  Perhaps spills which are more likely to happen to a homeowner.
How about a fertilizer spill?  Treating a fertilizer spill would be somewhat the same as treating your lawn if you “over fertilize”.  I advise homeowners all the time when they have burned their lawn with too much fertilizer.  There’s not much you can do; except water and wait.  All fertilizers may burn lawn grasses if improperly applied.  Fertilizers are made up of mineral salts.  Those salts can literally suck the moisture out of the plants and the soil.  If you’ve spilled granular fertilizer on your lawn, see if you can scoop it up, vacuum it up or rake it out as much as you can.  Physically remove as much as you can and/or spread it out as much you can.  Then drench the area.  Soak it the first day.  Then water it every day for a week.  If you’ve spilled (or over applied) a liquid fertilizer, water and wait.  If your spill is with liquid or granules, you may be done for the season.  Live to fight another day.  Remember, like I said above, you’re probably not going to fix it.  You’re trying to mitigate the damage.
How about an herbicide spill?  Or a pesticide spill?  Just like above, if its granular, try to physically scoop up and remove as much of the spill as possible.  If its liquid, watering is good to dilute it.  But, that will also make it spread.  I also spoke about activated charcoal earlier.  Some gardeners say activated charcoal is like using a “de – tox” (detoxification) material for your soil.  It can remove toxins and other bad stuff from the soil.  Using activated charcoal for an herbicide or pesticide spill is a good idea.  Apply it at 5 to 7 pounds per 1,000 square feet.  You need to water that too.  When that operation is complete, you’ll need to scoop up what is left and dispose of it properly. 
Here’s the bottom line:  If you spill something, its gonna hurt your lawn.  Don’t just stand there and scratch your head.  Take immediate action.  Try to be prepared to execute some of these tips.  Doing some of the things I have laid out in this blog post will not make the area look like nothing happened.  Get real.  But, these activities should MINIMIZE the damage to a certain degree AND cut some of the recovery time.  The level of effectiveness of these actions depends on what you spilled, how much you spilled, what species of turfgrass you have, how quickly you take action and how you try to treat the area. 
If there is no chance any of these bad things will ever happen in your lawn, then you didn’t need to read all this.  But, if there is a chance these things could happen, you didn’t waste your time reading this.

High Traffic Areas

Posted on November 4, 2014 at 2:31 PM Comments comments (93)
Do you have an area of your lawn where personnel are constantly walking?  Maybe not just personnel, but you also have equipment going through that area all the time?  Are there all sorts of personnel walking in the same areas…personnel coming in and out of the house, in and out of automobiles, delivery personnel or postal personnel?  Does your mower or other equipment have to go a certain route on your turfgrass every time?  This is what I call a “high traffic” area.  

For example, at the gate to my backyard, there is an area that has a difficult time growing turf.  Any person or piece of equipment (mostly my lawn tractor) that has to go in to or out of my backyard has to pass through that gate.  That turf is always beaten down.  And, it looks even worse in the summer, especially during times of drought stress or heat stress.  And, that area happens to be under a great deal of shade.  So, I’m out of luck on many counts.  

When your turf is being trampled, there are basically two things going on.  First, there is direct, physical damage being done to the turf plants.  Second, the turf may suffer the consequences of soil compaction.  The kinetic effects on the turf leaves are self explanatory.  The soil compaction may not be so self explanatory.  Compacted soil hinders root growth, water penetration and the take up of necessary nutrients.  Compaction occurs when soil particles are pressed together.  That pressing together of the soil particles eliminates the pore spaces in the soil that are required for air and water.  As many of us know, soils high in clay content are more susceptible to compaction than soils higher in sand or silt.   

What causes soil compaction?  In agriculture, it is usually rain, improper tillage, minimal crop rotation and wheel traffic.  Those all contribute to compacted soil on the farm.  In your yard, it is usually foot or wheel traffic.  Real hardcore pedologists (Like me!) use the term “bulk density”…the bulk density of soil.  Bulk density is a measure of a soil’s mass per unit volume of soil.  It is used as a measure of soil wetness, volumetric water content, and porosity.  Factors that influence the measurement include organic matter content, the porosity of the soil, and the soil structure.  A soil that has a well developed structure will become less dense as porosity increases; as a result the bulk density of the soil will decrease.  Soils which show massive structures and less porosity will show higher bulk densities.  This blog post will go full circle.  More on soil density later.   

As I’ve said several times throughout this blog, species selection should be the first consideration if you want to take on this problem.  Different types of turfs vary in their ability to tolerate wear.  Now, I’m here to tell you, if an area has real excessive (and I mean a whole lot) of foot and/or wheel traffic, no turf is going to stand up to it.  What is real excessive?  Well, I’d say that would be constant movement over an area.  Not a turf on this planet can handle huge amounts of traffic. 

Yet, if there is a moderate amount of traffic, there are some species that are better than others.  The most tolerant warm season grasses are zoysiagrass and bermudagrass.  Of the cool season grasses, perennial ryegrass and tall fescue are pretty tough.  Kentucky bluegrass is fairly tough but rough bluegrass and colonial bentgrass are terrible.  

Here’s a quick, final thought on species selection.  My lawn is primarily tall fescue.  In fact, you could call my lawn a “cool season blend”.  Remember – a mix is comprised of more than one species of turfgrass; a blend is when there is more than one cultivar within a species.  One of my goals for my lawn is consistency.  I would not want to plant, say, zoysia in that area on each side of my backyard gate.  It would look different.  It would ruin my lawn’s consistency, and possibly spread.  So, planting a patch of a different species in that area is not really desirable for me. 

There are some management practices one can do to enhance your turf’s tolerance to traffic.  One thing I say all the time – for many reasons, now this one - mow your turf high.  We know that longer turf leaves have more leaf surface exposed to the process of photosynthesis.  And, mowing higher encourages deeper roots.  Also, mowing is always a stress.  Perhaps mowing that area less goes hand in hand with allowing the grass to be longer and will help it deal with traffic better.  

Small amounts of thatch are acceptable.  If you read my blog post titled “Thatch”, you know I have said you should not have more than half an inch of thatch.  That still holds true.  But, having a small (less than 0.5 inch) layer of thatch can provide a cushioning barrier.  It keeps the turf leaves from actually getting crushed.  

From a fertilizer perspective, another thought is to reduce your nitrogen application.  An excessively thick and lush stand of turf is more susceptible to damage.  Increasing your potassium application will also increase the wear tolerance of your turfgrass.  

The only way to alleviate soil compaction is to core aerate.  Like many golf courses, core aerating more than once a year is an excellent thing to do, even if you don’t have compacted soil.  Those compacted cores are removed and replaced with holes that allow greater air and water movement.  Turfgrass roots grow into those holes and are exposed to air, nutrients and water.  If I could, I’d aerate my lawn at least twice a year – once in the fall and again in the spring.  Although most compaction is found in the top two inches of the soil, the deeper the cores, the better the results.  Read my blog post on “Aeration”.  

Finally, some (other) experts say a light topdressing of sand after the aeration will change the soil texture.  I’m not a big fan of that.  Why?  Because most homeowners don’t do that correctly.  Golf course superintendents get it right…most of the time.  It must be a VERY LIGHT topdressing.  And it should only be done in certain circumstances and in certain locations.  Messing up your soil texture is very difficult and very expensive to reverse.  As I said in my “Establishment” blog post, just putting down 1 to 2 inches of sand can cause “layering” of the soil.  When soils have these layers, the layers can become impermeable.  When you have impermeable layers in your soil, that is another different set of problems.  Having compacted soil pales in comparison to the problems posed by layered soil.  If you have layered soil, might as well rent that bulldozer with the huge soil ripper attached to it.  You want to add something to your soil after aeration?  Add organic matter like humus, peat or other soil conditioners or soil amendments like that. 

While I’m thinking about it; let me say this.  Gypsum will not break up compacted soil.  It will increase the calcium content of your soil and the salt content of your soil.  The use of sulfur has also been incorrectly acclaimed to break up compacted soils.  Sulfur has an acidifying effect on a soil.  Adding sulfur to a calcareous soil (soil mostly or partly composed of calcium carbonate) only creates gypsum (calcium sulfate).  All of this will mess with your pH level.  Don’t use any of these things for compacted soil.  Really, the basic solution for compacted soils is to physically manipulate the soil.  There are no short cuts when dealing with compacted soil.  There is nothing you can just pour out of a bottle or dump out of a bag to fix it.  

I guess I’ve said enough about dealing with high traffic areas in your turfgrass.  This sort of turned in to a block of instruction on compacted soil. 

If what I’ve laid out here doesn’t really apply or does not work, well, perhaps this is one of those battles you should withdraw from and live to fight another day.  I hate to say it.  Maybe you should do something to manage traffic flow.  Raising your garden beds, establishing a walk way, installing a fence or garden wall (like a "hard scape" solution), mulching…these can all be alternatives to having a hard soil bare patch in your beautiful lawn.